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How electroencephalography assisted in 

the diagnosis of mild cognitive 

impairment due to Alzheimer’s disease. 

Introduction 

Alzheimer’s disease (AD) presents an immense current and future healthcare burden. AD is 

the most common form of age-related dementia; in the global north, dementia prevalence is 

24-33% of people aged 85 or older (Blennow et al., 2006).  However AD is no longer a 

public health issue restricted to higher income countries Increasing life expectancy in the 

global south has led to over half (58%) of the present global dementia burden being carried 

by lower- and middle-income countries (Alzheimer’s Disease International, 2015). Moreover, 

prevalence is increasing with population aging - in the UK, for example, dementia prevalence 

is set to increase by 40% over the next 12 years (Prince et al., 2014). As such, an affordable 

diagnostic tool for the improved management of patients and the development of disease 

modifying therapies is greatly needed (Hampel et al., 2010). 

AD causes a slow, progressive decline in cognitive function. Along this continuum are three 

clinically separable phases: an asymptomatic phase, a symptomatic predementia phase, and, 

finally, dementia onset. Whereas clinical diagnosis of AD upon dementia onset is very 

accurate (between 91 and 98% (Blennow et al., 2006)), diagnosis of the symptomatic 

predementia phase lacks consistency; both clinically, and in AD research (Stephan et al., 

2013). The symptomatic predementia phase is known, and referred to hereafter, as mild 

cognitive impairment (MCI). MCI is not only poorly diagnosed but, on diagnosis, is also 

poorly categorised according to its aetiology – be it normal ageing, AD, or other age-related 

dementias (Stephan et al., 2013). The ability to accurately diagnose MCI due to AD would 

present an important advancement in the clinical management of AD cases and research into 

disease modifying therapies. 

In 2013, Vrije Universiteit, Amsterdam published research on the use of 

electroencephalography (EEG) in predicting MCI due to AD. This pioneering study by Poil et 

al., (2013), although not highly cited, is the latest and most convincing account supporting the 

case for widespread use of EEG for preclinical AD diagnosis. In this study, 86 patients 

diagnosed with MCI underwent resting state EEG recordings. Patients were followed up 
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clinically for a period of two years, after which, a diagnosis of AD or stable MCI was made. 

Data from 34 patients in the group was used to build a statistical classifier to differentiate 

stable MCI from MCI due to AD, using 6 EEG parameters. This classifier was then tested on 

the initial data of 30 separate participants. It identified 88% of those who progressed to 

develop AD (88% sensitivity) and 82% of those who would not progress to develop AD 

(82% specificity).  

 

This essay will outline how it was that Poil et al. (2013) were able to use EEG to identify, 

with a sensitivity and specificity higher than some screening tools currently in use (such as 

the cervical smear test (Barut et al., 2015)), patients that went on to develop AD. The essay is 

divided into two sections. Firstly, it will discuss how EEG, as an imaging modality, is well 

suited to detecting pathological changes in AD. Secondly, it will discuss how the technical 

details of Poil et al’s work allowed them, albeit retroactively, to make accurate diagnoses of 

MCI due to AD. 

Alzheimer’s disease as observed by EEG 

EEG can be used to observe three levels of brain organisation that are disturbed in AD; 

namely: synaptic transmission, neural circuitry, and global network changes. 

Synapses 

EEG measures electrical activity caused by dipoles formed in the extracellular matrix around 

pyramidal neurons. Specifically, the dipoles observed are those originating from apical 

dendrites. They occur due to either the cellular influx of positive ions as a result of excitatory 

postsynaptic potentials or the cellular influx of negative ions and efflux of positive ions as a 

result of inhibitory postsynaptic potentials (Silva, 2009). These signals can be detected by 

individual contacts on the scalp for two reasons: firstly, pyramidal cell dendrites are 

organised, mostly, perpendicularly to the surface of the scalp; and secondly, the primate 

neocortex is organised into minicolumns of approximately 80-100 neurons that are grouped, 

via collateral connections, to form cortical columns (Mountcastle, 1997). This second point 

means that there is a synchrony in pyramidal activation and the dipoles generated resulting in 

an observable electrical field. 

Neuropathology in AD is classically characterised by widespread neuronal cell loss, 

neurofibrillary tangles (formed by phosphorylated tau protein filaments) and senile plaques 

(formed by extracellular amyloid β deposits) (Citron, 2010). However, as shown by Terry et 
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al., (1991) synaptic density is also reduced in the brains of AD patients at post mortem. 

Moreover, a loss of synaptic density, and not increased neurofibrillary tangles or senile 

plaques, was shown to strongly correlate with performance in tests of cognitive function. As 

well as being clinically relevant to AD, synaptic change is also an early development in the 

neurodegenerative disease (Palop and Mucke, 2016).  

Indeed, this can be observed in-vitro. Synaptic activity, particularly at low-pass-filter 

synapses produces amyloid plaques from the protein fragment amyloid β (Aβ) (Dolev et al., 

2013). In turn, Aβ acts to regulate synaptic activity. By inhibiting Aβ degradation, Abramov 

et al., (2009) observed that raised synaptic cleft Aβ concentration increases vesicular 

neurotransmitter release and hence presynaptic strength increased 2.8-fold. Conversely, 

Kamenetz et al., (2003) found that, in hippocampal pyramidal neurons, overexpressing 

amyloid precursor protein in a minority of cells caused widespread synaptic depression over a 

longer timescale. This depression was dependant on gamma-secretase, an enzyme that 

processes amyloid precursor protein to form Aβ. 

The above results show that departure from normal Aβ homeostasis can rapidly change 

synaptic functioning in cortical pyramidal neurons. As such, we can see how EEG would be 

appropriate for detecting early changes in AD. 

Local Networks 

A Fourier transformation converts the raw EEG signal into a power spectrum showing the 

contribution of five frequency bands to the amplitude of the overall signal. These frequency 

bands (or oscillations), in order of fastest to slowest, are named gamma, beta, alpha, theta and 

delta (Buzsaki, 2006). There is debate as to where in the cortex these oscillations come from, 

and which cortical networks give rise to them. An early interpretation of the slower 

frequencies was that they originated from further-away cortical structures whose signal was 

slowed by propagation through more brain medium (Voss and Clarke, 1976). Although brain 

medium does effect EEG signal, it cannot explain why slower frequencies are synchronous 

over a large neocortical area whereas faster frequencies are not. As such, it would seem 

logical that different cortical structures are responsible for producing the different rhythms. 

This has been observed in hippocampal slices of rats where three different oscillations are in 

operation that are generated independently (Penttonen and Buzsáki, 2003). Rather than 

simply being a by-product of cortical activity, the frequency of different neural oscillations 

are thought allow cell assemblies to communicate with, and influence other cell assemblies, 
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which in turn facilitates brain function (Buzsáki and Draguhn, 2004). Possible evidence for 

this lies in the linear natural logarithmic relationship between the different frequency bands. 

This relationship occupies a middle ground between complete phase synchrony of different 

oscillating networks and complete asynchrony – the natural logarithmic relationship allows 

networks to easily flux in and out of phase, enabling timely, sufficient and necessary 

communication (Penttonen and Buzsáki, 2003).  

There is evidence in AD that this natural logarithmic relationship between oscillators is 

disturbed. Epidemiologically, it has been observed that AD confers a risk of epilepsy – a 

neurological condition caused by hypersynchrony of neural networks due to excitatory 

transmission. Hyperactive networks leading to seizure in AD largely originate in the 

hippocampus, an area with dense recurrent excitatory projections that experiences marked 

damage early on in the disease trajectory (Le Duigou et al., 2014; Noebels, 2011). 

Additionally, interactions between specific network oscillations are dysfunctional in 

transgenic mouse models of AD (Goutagny et al., 2013). Cross-frequency, phase-amplitude 

coupling between gamma and theta oscillations is recruited, in the hippocampus, during 

difficult working memory tasks (Axmacher et al., 2010). Goutagny et al., (2013), identified 

that this coupling was persistently altered in in-vitro hippocampal preparations of an AD 

transgenic mouse model. Importantly, these alterations occurred before significant amyloid 

load (but were nonetheless age-dependant). Lastly, interneuron dysfunction, though not, as 

yet, clearly implicated in AD, may play an important role. Interneurons have important 

clocking action that helps regulate oscillatory rhythms through GABAergic innervation of 

pyramidal neurons (Palop and Mucke, 2016). Interneuron dysfunction in AD is evidenced by 

depletion of Nav1.1 in an AD mouse model. Nav1.1 is a voltage gated sodium channel 

subunit that is predominantly expressed on interneurons. Importantly, these mice also show 

epileptiform activity (Verret et al., 2012).  

Therefore, a bulk of evidence supports that network alterations likely play an early, and 

clinically relevant role in AD. As such, at another level of brain organisation, we see how 

EEG would be able to observe these changes. 

Global network changes 

As mentioned above, it is the communication between different brain areas that allows for 

cognition to occur. The evolutionary drive for this to be done at low metabolic cost has 

favoured small world network organisation in the adult brain – that is, highly interconnected 
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local circuitry with sparse long-range connections (Watts and Strogatz, 1998). This structural 

organisation is reflected in the distribution of oscillations in the cortex. Slower oscillations 

are better suited to long range communication, and so span a wider area, as information can 

travel further with each cycle. Short range communication however can occur at high 

frequencies as the temporal constraints are smaller (Buzsaki, 2006). 

In AD the general pattern of EEG changes across the cortex is an increase in power of low 

frequency oscillations and a decrease in power of higher frequency oscillations (Nimmrich et 

al., 2015). This change is reflected again in coherence analysis of EEG signal which shows 

decreased coherence between high frequency oscillators but unchanged or even increased 

coherence of low frequency oscillators (Jeong, 2004). The integration of structural and 

functional changes in AD pathophysiology is an ongoing research challenge. While EEG 

changes in AD would logically cause an increase in synaptic path length, in actuality, the 

reverse is observed (Sanz-Arigita et al., 2010). However, network changes in AD are mainly 

driven by changes to highly interconnected areas which aligns with general pattern of EEG 

changes (Stam et al., 2009). It may be that differences in disease severity between patient 

populations in different studies has driven this confusion. Longitudinal functional and 

structural brain imaging would resolve this issue. 

The evidence is thus less clear, than for network and synaptic alteration, on how 

appropriately EEG represents the global brain alterations in AD. However, given EEG 

measures the interconnectedness of brain areas, embedded within the signal collected at scalp 

electrodes will be information on the global, brain organisation changes in AD. The 

challenge, therefore, is not to improve the imaging technology, but rather with the 

interpretation of its results. The next section will examine how the EEG phenomenon can be 

used without requiring results to be interpreted. 

The diagnosis of MCI due to AD by Poil et al., (2013) 

This section looks at how Poil et al., (2013) were able to retroactively diagnose MCI due to 

AD from preclinical EEG recordings. Firstly, the importance of how EEG features were 

selected for diagnosis will be discussed. Secondly, this section will outline how an 

appropriate population fit was generated for the diagnostic tool. Lastly, this section will look 

critically at how Poil. et al., (2013) could have further improved their diagnoses.  
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Selection of EEG features to generate a diagnostic tool 

Early work into the diagnosis of MCI due to AD, as done by Jelic et al., (2000), used only a 

few EEG measures to make prognoses (in this case changes to the relative power of theta and 

alpha frequency bands). Restrictions on the number of EEG biomarkers that could be 

included in the diagnostic possibly resulted from having a smaller literature base to draw 

from. Another factor restricting the use of multiple EEG features in diagnosis was a lack of 

more sophisticated statistics that could model large numbers of features in generating a 

biomarker. The benefit of using more features to generate a diagnostic tool, as done by Poil et 

al. (2013) (who used six), is that features that only explain a small amount of the variance 

between at-risk and non-at-risk groups can be included to generate an overall high specificity 

and sensitivity.  

Other studies have focussed exclusively on the EEG markers of AD that are supported by a 

large literature base, for example the slowing of the alpha rhythm peak below 8 Hz (de Waal 

et al., 2011; Kramberger et al., 2013; Rodriguez et al., 2011). This focus on the content 

validity of EEG as a diagnostic tool does not acknowledge the inconsistencies that exist in the 

literature. For example, as discussed above, the characteristic network changes that occur in 

AD are not supported by graph analyses on the effects of AD on brain network characteristics 

(Nimmrich et al., 2015; Sanz-Arigita et al., 2010). Additionally, earlier it was discussed that 

slow oscillations are not simply a manifestation of the effect of electrical signals propagating 

through brain medium (Buzsaki, 2006). However, the brain medium, dura, bone, and skin 

that an electrical signal travels through to reach an electrode may affect the signal in 

unpredictable ways (Clarke et al., 2016; Voss and Clarke, 1976). As such, after 

understanding, as outlined above, that the EEG signal will somehow convey the pathological 

changes that occur in AD, a diagnostic tool can confidently be created using EEG; there need 

not be, however, a rigorous rational for each EEG feature it uses. Poil et al., (2013) achieve 

this using a machine-learning (genetic search) strategy to identify the best possible set of 

biomarkers out of a possible 177 extracted from each EEG trace. The set of EEG biomarkers 

was altered using 4 different rules a total of 5 times in each “generation”. This created 20 new 

sets of biomarkers that were compared to the optimal biomarker in the previous set. The 

genetic algorithm carried out 100 generations. Testament to the importance of using this 

method was the presence of 4 of 6 diagnostic EEG changes being in the beta frequency band 

– which is a less discussed frequency in relation to AD (compared to gamma, alpha and theta 

frequencies) (Palop and Mucke, 2016; Walsh et al., 2017). 
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Fitting their diagnostic model to the wider population 

Poil et al., (2013), importantly didn’t overfit their classifier. If enough biomarkers are 

included it is possible to create a diagnostic tool that separates two groups perfectly, however 

this tool will not be generalisable to the general population. As such, researchers tested the 

classifiers generated by the genetic search strategy on a second set of EEG traces taken at a 

different time. This technique meant that the final, best, classifier had a predictive validity 

that enabled it to diagnose MCI due to AD in the separate, test population.  Indeed, although 

other studies have employed similar machine-learning techniques to generate a diagnostic 

tool, and yielded higher sensitivity and specificity, they did not train and test their classifiers 

using separate data – so there is no indication of how their classifiers would perform on a 

different population (Moretti et al., 2011; Rossini et al., 2008). This is a similar problem to 

that of “double-dipping” present in the wider neuroimaging literature which has lead to 

suspiciously high correlations being generated in statistical analyses (Kriegeskorte et al., 

2009). 

Further improvements in diagnosing MCI due to AD using EEG 

To accurately answer the question of how EEG assisted in the diagnosis of a patient it is 

important to look at how its use in diagnosis could be improved. Poil et al., (2013) were 

generating a classifier using a small sample size (n = 34), as such they were at risk of creating 

a model that overfit its training population. If the study was repeated using a larger sample 

size, researchers could include demographic variables within the model which would likely 

increase specificity and sensitivity. One obvious variable would be age. For example, de 

Waal et al., (2011) showed in a large sample (460 probable AD patients) that younger AD 

patients showed more prominent focal and diffuse EEG abnormalities. Another additional 

variable to include would be cognitive markers. For example, the mini mental state 

examination (MMSE) can diagnose mild dementia with a specificity and sensitivity of 100% 

and 55% respectively (Sabe et al., 1993). Although the sensitivity of the MMSE is low, this 

may not matter if used as one variable in a diagnostic tool. 

Of course, any number of other variables could be included in a classifier such as genetic 

background, other neuroimaging results (such as structural magnetic resonance imaging). 

However, I think it important to stress that how, Poil et al., (2013) assisted in the diagnosis of 

AD in an affordable way (an EEG machine costs at least 10-fold less than an MRI scanner). 

This point is especially pertinent given that most of the AD burden currently lies in lower to 

middle income countries (Alzheimer’s Disease International, 2015).  
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Conclusion 

There is a current pressing need to be able to distinguish MCI due to AD from stable MCI. 

Considering this, the present essay addressed the question “how EEG assisted in the 

diagnosis of MCI due to AD” by focussing on one research group who, albeit retroactively, 

used machine-learning and EEG to effectively diagnose MCI due to AD. The question of how 

EEG assisted in this diagnosis was addressed from two directions. Firstly, the essay looked at 

how the EEG phenomenon is a manifestation of activity within the structures that are 

damaged in AD – and thus, as an imaging modality able to assist diagnosis. Secondly, this 

essay examined how EEG features, identified, and tested using machine-learning, can model 

the difference between two patient groups such that it can be used as diagnostic tool. This 

supports EEG being developed as diagnostic tool to be used in a clinical setting and to 

identify sample populations in AD research. 
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